PUMPING LEMMA

A property of regular sets

- Weak version
- Strong version
- Applications

PUMPING LEMMA (WEAK)

If a language L is accepted by a DFA M with m states, then any string x in L with $|x| \ge m$ can be written as x = uvw such that

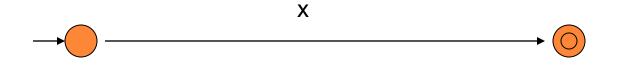
n

- (1) v ≠ε, and
- (2) uv*w is a subset of L

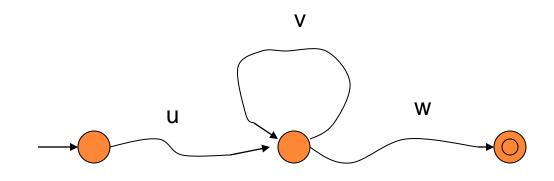
(i.e., for any $n \ge 0$, uv w in L).

PROOF

• Consider the path associated with x (|x| > m).



Since $|x| \ge m$, # of nodes on the path is At least m+1. Therefore, there is a state Appearing twice.



 $v \neq \epsilon$ because M is DFA

- uw in L because there is a path associated with uw from initial state to a final state.
- uvⁿw in L due to the same reason as above

L={0 |nN IS A PRIME} IS NOT REGULAR.

Proof. For contradiction, suppose L is regular. So, L=L(M) for some DFA M.

Let m be the number of states of M. Consider a prime p > m. By Pumping Lemma, 0 = uvw such that $v\neq\epsilon$ and

uv*w is a subset of L. Thus,

```
p = |u| + |v| + |w|
```

and for any $k \ge 0$, |u|+k|v|+|w| is a prime.

For k =0, |u|+|w| is a prime. For k=|u|+|w|, |u|+k|v|+|w|= (|u|+|w|)(1+|v|)is a prime. (-><-)

$L=\{0^{i} 1^{i} | i \ge 0\}$ is not regular.

Proof. For contradiction, suppose L is regular. So, L = L(M) for some DFA M.

Suppose M has m states. Consider $0^{m} 1^{m}$.

By Pumping Lemma, $\stackrel{m}{0} \stackrel{m}{1} = uvw$ such that $v \neq \varepsilon$ and for $n \geq 0$, $uv^{n}w$ in L.

Case 1. v is a substring of 0^m . uw in L, but uw contains less 0's than 1's. (-><-)

Case 2. v is a substring of 1^m. uw in L, but uw contains less 1's than 0's. (-><-) Case 3. v contains both 0 and 1.

uvvw in L, but uvvw contains 10. (-><-)

PUMPING LEMMA (STRONG)

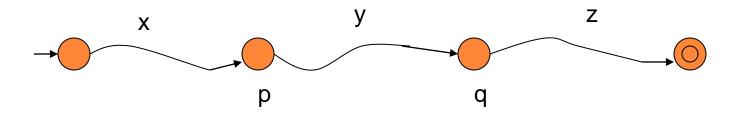
If a language L is accepted by a DFA M with m states, then any string xyz in L with |y| ≥ m can be written as y = uvw such that (1) v ≠ ε, and
(2) xuv*wz is a subset of L.

n

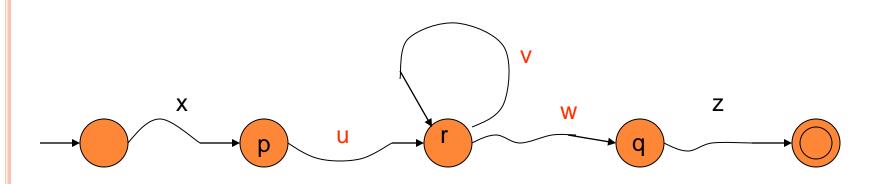
(for $n \ge 0$, xuv wy in L)

PROOF

 Since M is DFA, there is a path from initial state to a final state, associated with xyz.



Since $|y| \ge m$, there are at least m+1 nodes between p and q. Hence, there is a state r appearing twice.



 $v \neq \epsilon$ because M is DFA (without ϵ -move).

- xuwz in L because a path associated with xuwz exists from initial state to a final state.
- xuvvwz in L because a path associated with xuvvwz exists from initial state to a final state.

xuvⁿwz in L

$L=\{0^{i} 1^{i} | i \ge 0\}$ is not regular.

Proof. For contradiction, suppose L is regular. So, L = L(M) for some DFA M.

Suppose M has m states. Consider $0^m 1^m$.

By Pumping Lemma, $0^{m} = uvw$ such that $v \neq \epsilon$ and for $n \ge 0$, $uv^{n} w 1^{m}$ in L.

L={x in $(0+1)^*$ | $\#_1(x) = \#_0(x)$ } is not regular.

Proof. For contradiction, suppose L is regular. So, L = L(M) for some DFA M.

Suppose M has m states. Consider $0^m 1^m$.

By Pumping Lemma, $0^{m} = uvw$ such that $v \neq \epsilon$ and for $n \ge 0$, $uv^{n} w 1^{m}$ in L.

$L=\{0^{i} 1^{j} | i \ge j \ge 0\}$ is not regular.

Proof. For contradiction, suppose L is regular. So, L = L(M) for some DFA M.

Suppose M has m states. Consider $0^{m} 1^{m}$.

By Pumping Lemma, $0^{m} = uvw$ such that $v \neq \epsilon$ and for $n \ge 0$, $uv^{n} w 1^{m}$ in L.

$L=\{0^{i} 1^{j} | i > j \ge 0\}$ is not regular.

Proof. For contradiction, suppose L is regular. So, L = L(M) for some DFA M.

Suppose M has m states. Consider 00^m1^m.

By Pumping Lemma, $0_n^m = uvw$ such that $v \neq \epsilon$ and for $n \ge 0$, $0uv^n w 1^m$ in L.

L={ $a^{i} b^{j} c^{k}$ | i + j = k, i ≥ 0, j ≥ 0, k ≥ 0 } is not regular.

Proof. For contradiction, suppose L is regular. So, L= L(M) for some DFA M.

Suppose M has m states. Consider $b^m c^m$.

By Pumping Lemma, $b^{m} = uvw$ such that $v \neq \epsilon$ and for $n \ge 0$, $uv^{n} wc^{m}$ in L.

 $L = \{ 0^{i^2} | i \ge 0 \}$ is not regular.

Proof. For contradiction, suppose L is regular. So, L=L(M) for some DFA M.

Suppose M has m states. Consider 0^m . m^2 By Pumping Lemma, $0^m = uvw$ such that $v \neq \epsilon$ and for $n \ge 0$, $uv^n w$ in L.

Set a=|v| and b=|uw|. Then a > 0 and for $n \ge 0$, an+b is a square.

Specially, when n=0, b is a square. Set b = cc.

When n = a+2c, $an+cc = (a+c)^2$.

Now, consider n=a+2c+1.

Note that $an+b = (a+c)^2 + a$.

But, $(a+c+1)^2 = (a+c)^2 + 2(a+c) + 1 > (a+c)^2 + a$. Hence, $(a+c)^2 + a$ cannot be a square. (-><-)

Puzzle